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In the present paper, we illustrate the contrast, concerning the effectiveness
properties of the derived sets of simple sets of polynomials, between the single- and
the two-variable cases. Moreover, a positive result is established for the relationship
between the Cannon functions of simple sets of polynomials in two complex
variables and those of the derived sets. Finally, it is, shown that concerning the
effectiveness of the integrated sets, the result of the single-variable case can be
extended, without undue difficulty, to two variables. © 1986 Academic Press, Inc.

1. NOTATION AND PRELIMINARIES

The derived and integrated sets of a given basic set of polynomials of a
single complex variable have been studied by many authors, of whom we
may mention Makar [1, Theorems I-TV] and Newns [3, Theorems 23.1,
23.2]. According to the results obtained by these authors, and noting that
the outstanding restrictions of Makar [1, formulas (13), p. 220; (14),
p.222) apply for simple sets, it can be stated that both the derived and
integrated sets of a given simple set of polynomials retain the effectiveness
properties possessed by the given set. We propose to investigate the extent of
generalisation of the above statement for the two-variable case. The present
work was motivated by the fact, illustrated here by the example of Sec
tion 2 below, that, in contrast with the single-variable case, the effectiveness
properties of the derived set of a given simple set of polynomials in two
complex variables may be distinct from those of the given set.

The main results obtained in the present paper are displayed in
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Theorems 1 and 2 below and to formulate them we must first develop cer
tain preliminaries and notation.

The reader is assumed to be acquainted with the theory of basic sets of
polynomials in a single complex variable as given by Whittaker [4, 5J and
of polynomials in several complex variables as given by [2]. We first give a
detailed account of simple sets of polynomials in two complex variables.
Thus, in the space 1[2 of the two complex variables z and w, the successive
monomials 1, z, w; Z2, ZW, w2;... are arranged so that the enumeration nume

ber of the monomial zjwk in the above sequence is !(J +k)(J + k + 1) +k
(j, k:;:::: 0). The enumeration number of the last monomial of a polynomial
p(z, w) in two complex variables is called the degree of the polynomial. A
sequence {Pi(Z; w}O' of polynomials in two complex variables in which the
order of each polynomial is equal to its degree is called a simple set. Such a
set is conveniently denoted {Pm,n(z; w)}, where the last monomial in
Pm.n(z, w) is zmwn. If further, the coefficient of this last monomial is 1, the
simple set is termed monic. Thus, in the simple monic set {Pm,n(z; w)} the
polynomial Pm,n(z, w) is represented as follows.

m+n k

P (z w) = '\"' '\"' pm,n ..Zk- jw j
m,n' ~ '-'. k - J~J

k~Oj~O

The fact that the simple set {Pm.Az, w)} is necessarily basic follows from
the observation that the matrix [p;,n of coefficients of the polynomials of
the set is a lower triangular matrix with non-zero diagonal elements.
(These elements are each equal to 1 for monic sets.) In this matrix the coef
ficients (pZtf') are lexicographically arranged in rows with respect to the
subscripts (h, nand in columns with respect to the superscripts (m,n). This
lower triangular matrix has an inverse, also a lower triangular matrix
[p;,;n], in terms of which the following representation holds:

m+n k
m n_ '\"' '\"' -m,n (.)z w - L. L. Pk-j,jPk-j,j Z, W

k=Oj=O
(ft::~ = 1; P:'~n _j,j = 0, j> n). (1.2)

To investigate the effectiveness properties of the set {Pm,n(z; w)} we first
form the Cannon sum of the set, defined as

m+n k

wm",[rJ = (jm,n I I I ftZ'::' j,j I M[Pk _ j,j; r]. (1.3)
k~Oj=O

where

(1.4)
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over the closed sphere Sr (cf. [2, formula (2.4), p. 44]),

(m,n>O);

=1 (m,n=O).
(1.5)

The quantity (1.5) will be used often in the subsequent work. Also, the
notation (1.4) will be adopted here for functions regular in the sphere Sr'
The effectiveness properties of the set {Pm,n(z; w)} are governed by the
Cannon function of the set, given by

w[r]=limsup {wm,n[r]}l/(m+n»r.
m+n-+ co

(1.6)

As a typical effectiveness result, we may mention here Cannon's theorem
for two variables, in the following form (cr. [2, Theorem 3]).

CANNON'S THEOREM. A necessary and sufficient condition for the simple
set {Pm,n(z; w)} to be effective in Sr is that

w[r]=r. (1.7)

By effectiveness of the set in Sr we mean that the set forms a base for the
class E of functions regular in Sr with a norm given by M[f; r] for each
fEE.

We now define the derived set with respect to z, namely, the derived set of
the simple monic set {Pm,n(z; w)} to be the set {um,n(z; w)} given by

8
umn(z, w)=-8 Pm+ln(Z; w), z' (m,n>O). (1.8 )

Since the last term in the polynomial um,n(z;w) is 8zm+1wn/8z=
(m + 1) zmwn it follows that the derived set {um,n(z; w)} is simple (but not
monic).

Needless to say, an identical procedure can be carried out for the treat
ment of the derived sets with respect to w.

The following notation is introduced. Write

and put

o~ h ~ n; tn•h = 0, h > n, (1.9)

n

tn(z) = I tn,h zh.
h=O



POLYNOMIALS IN TWO COMPLEX VARIABLES 273

Since the set {Pm,n(Z; w)} is monic then ftg:~~ f = 1 and therefore, the set
{tn(z)} is a simple monic set of polynomials of the single variable z. Sup
pose that zn admits the representation

n

zn= I t",hth(Z),
h~O

Then, as usual, the Cannon sum of the set {tn(z)} will be

n

An(r)= I Itn,h I M(th;r),
h=O

(1.10)

(1.11)

where M( th; r) = sup Ith(Z) Iin IZI~ r. The Cannon function of the same set
IS

Jc(r) = lim sup Pn(r)} lin.
n~(1)

(1.12)

The first main result of the present work establishes a relationship
between the Cannon functions of the given simple monic set of polynomials
and the derived set. This result, which is formulated in Theorem 1 below,
generalises, to the two-variable case, the main inequality of Makar [1, for
mula (11), p. 220J, concerning the same items in a single variable. With the
above notation, Theorem 1 can be stated as follows.

THEOREM 1. For any positive number r, the Cannon function Q [rJ of
the derived set {um,n(z; w)}, of the simple monic set {Pm,Az; w)}, will satisfy
the inequality

(1.13)

and this inequality cannot be improved when the set {Pm,n(z; w)} is effective
in Sr'

We then define the integrated set with respect to z, namely, the integrated
set of the given simple (not necessarily monic) set {Pm,n(z; w)} to be the set
{vm,n(z; w)}, constructed in the following manner,

For m > 0, we have

and when m = 0, we set

(n ~ 0), (1.14)

(n ~ 0). (1.15)
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Since the last term in vm,n(z, w) is (11m) p';:.=t~ zmwn, m > 0, it follows that
the integrated set {vm,n(z; w)} is a simple set (but not necessarily monic).
Again, an identical treatment can be carried out for the integrated sets with
respect to w.

With the foregoing choice of integrated sets, we see from the following
theorem, which is the second main result of the present paper, that the
effectiveness properties of the integrated set {vm,n(z; w)} are, as in the
single-variable case (cf. Makar [1, Theorem IV]), identical with those of
the given simple set {Pm,n(z; w)}.

THEOREM 2. Let {Pm,n(z; w)} be a given simple set of polynomials and
suppose that {vm,n(z; w)} is the integrated set defined by (1.14) and (1.15).
Then the Cannon functions of the sets {Pm,n(z; w)} and {vm,n(z; w)},
corresponding to any positive value of r, are equal provided that they are
finite.

2. EXAMPLE

We construct, in what follows, a simple monic set of polynomials in two
complex variables, such that the effectiveness properties of the derived set
are distinct from those of the constructed set.

In fact, consider the set {Pm,n(z; w)}, constructed as follows.

Po,o(Z; w) = 1; (m, n >0),

m-l
Pm,o(z; w) = zm + L f(j)(zi + zi- 1

W + ... + wi) (m ~ 1), (2.1)
i~O

where

(n ~ 1),

(
J+ 3 )(J+ 1)/2

f(j)= 1+ J+ 1 (j~0). (2.2)

It is seen that this set is simple and mOllIe. Moreover, the following
representations are obvious.

Zm = Pm,O(z; w) - f(m - 1) PO,m-l(Z; w)

(m, n>O),

(m ~ 1).
(2.3)
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Also, it can be verified, for n): 1, that

n-l
wn= PO,n(z; w) - L Pn~j)z; w)

j=O

+ f(n -1) {1-f(~)} PO,n-l (z; w).

275

(2.4)

In fact, the formula (2.4) is obvious for n = 1. When n> 1, the right-hand
sider of (2.4), in view of (2.1), will be equal to

n-l n-l

_zn_ L f(j)(zj+zj-1w+'" +wj)- 2.: zn- jwj

j=O j=l

{
l}n~1 .. .+ 1-- 2.: fU)(ZJ+ZJ-1 W + ... +wJ)=wn,

f(n) j~O

and (2.4) is thus verified for n): 1.
The Cannon sum of the set {Pm,n(z; w)}, as defined in (1.3), can be

evaluated rom the representations (2.3) and (2.4), taking (2.1) and (2.2)
into account. Thus, we shall have

wm,O[r] < {l + 2em(m + I)} rm

woAr] < {2n+ 1+2en(n+ 1)}rn

(m, n, r> 0),

(m, r): 1),

(n, r ~ 1).

Therefore, for the Cannon function of the set {Pm,n(z; w)}, as given by
(1.6), we shall have

w[r] ~ r (r):1).

Hence, by Cannon's theorem, we deduce that the set {Pm,n(z; w)} will be
effective in all Sr for r): 1.

According to (1.8), the derived set {um,n(z; w)} of the set {Pm,n(z; w)} of
(2.1), is given as follows.

UO,o(z; w) = 1;

(m):O;n~l),

m-l

um,o(z; w) = (m + 1) zm+ L fU+ 1){U + 1)z) + jzj-1w + ... + wj }
j=O

(m ~ 1).

(2.5)
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As for the monomials (zmwn) representation in terms of the polynomials
{um,n(z; w)}, the following formula will be established for m ~ 2.

m-I

(m + 1)zm = um,o(z; w) - f(m) I um_ j_l,j(Z; w)
j=O

+ :~: (-1)m-kf (k+1)L=D+2 {f(J)-1}lto Uk_j,j(z;w).

(2.6)

Actually, it can be verified from (2.5) that the formula (2.6) is satisfied for
m = 2. Suppose that (2.6) is valid for certain m ~ 2; then according to (2.5)
we shall have

Um+I,O(Z; w) = (m + 2)zm+ 1 + {f(m + 1) -l} (m + 1) zm + um,o(z; w)

m

+f(m+1) I um_jJz;w).
j=1

Therefore, applying (2.6), we can easily obtain

m

(m + 2) zm+ 1 = Um+I,O(Z; w) - f(m + 1) I um-jJz; w)
j=O

m-I

+ I (_l)m+l-kf(k+1)
k=O

so that (2.6) remains valid for m + 1 also, Hence, by induction we infer that
(2.6) is true for all m"? 2.

We shall denote by Qmn[r] for the Cannon sum of the derived set
{um,n(z; w)}, Therefore, as in (1.3), we can deduce from (2,6) that

f(1) [ m . ]
Qm,O[r] > m + 1 }l2 {f(j) -1} M[uo.o; r]

Introducing therefore (2.2) in (2,7, it follows that

1 m 0'+ 3)(j+ 1)/2
Q o[r]>--D -

m, m + 1 j= 1 .+ 1 '

(m~2). (2.7)
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Hence, the Cannon function of the set {Um,n(Z; w)} is

Q[r] = lim sup {Qm,n[r]}I/(m+n)
m+n-.. 00

~ lim {Qm,o[r]}I/m
m~ 00

. { 1 m U'+3)U+
1
)/2}I/m

~hm --D--
m~oo m+l j =1 '+1

. (m + 3)(m+ 1)/2
= hm -- =e.
m~oo m+l
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(2.8 )

Therefore, for 1:( r < e, we shall have Q[r] > r and the derived set
{um,n(z; w)} will not be effective in the spheres Sn where the given set
{Pm,n(z; w)} is effective.

3. DERIVED SETS

Before proceeding to prove Theorem 1, we must first carry out a study
on the derived sets {um,n(z; w)}, of the given simple monic set {Pm,n(z; w)},
as defined by (1.8). In fact, introducing (1.1) in (1.8) we easily obtain

m+n k
U (z'w)= '" '" (k+l_j·)pm+l,n .. zk-jwj (3.1)m,n' i....A i...J k + 1 - J,j ,

k~Oj=O

noting that pm + l,n = 1 and pm + l,n .. = 0 for j' > n We also note thatm + 1,n m + n + 1 - J,J' ,

although the set {um,n(z; w)} is simple, yet the derived polynomials
(oloz) PO,n(z; w), for n ~ 1, are redundant and they must be eliminated. For
this aim we write

(n ~ 0), (3.2)

and observing that the degree of qn(z; w) does not exceed ~n(n + 1) + n
(corresponding to the monomial wn

), we suppose that

n k

qn(z, w)= L L r:t.k_j,jUk_j.j(Z; w)
h=Oj~O

(n ~ 0), (3.3 )

To obtain recurrence relations for the coefficients (r:t.;:,J, we differentiate the
representation (1.2) for wn + 1 and then apply the relations (1.8), (3.2), and
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(3.3). Noting that the simple set {Pm,n(z; w)} is monic, we can easily arrive
at the following relations.

rtn - p-O,n+ 1
n - j,j - - n + 1 - j,j

n-1
rtn - p-O,n + 1 " p-o,n + 1 rth

k - j,j - - k + 1 - j,j - L.. O,h + 1 k - j,j
h~k

(O~j~n), (3.4)

(0~j~k;0~k~n-1). (3.5)

It remains now to derive the zmwn-representation in terms of
polynomials {um,n(z; w)} by differentiation of the expression (1.2)
zm+1wn, applying the definition (1.8) and (3.2) and then inserting
relation (3.3). In this way, we obtain the representation

the
for
the

(3.6)

t· . th t -m + 1 n 1 d -m + 1nO!" W' h h bno mg agam a Pm+1;n= an Pm+n'+l-j,j= lor ]>n. It tea ove
study on derived sets we start to prove Theorem 1 in what follows.

Proof of Theorem 1

We first evaluate the coefficients (rtU from the relations (3.4) and (3.5).
In fact, in (3.5) we write j for k - j and k for j; then in the notation (1.9),
we obtain

n

" t rt h - _ p-O,n + 1L.. n,h j,k - j+ 1,k
h=j+k

(n?j+k). (3.7)

For any fixed values of j and k, we consider the system of linear equations
(3.7) in the unknowns (rtZ,k) for n = j + k, j + k + 1, j + k + 2,.... It is easily
seen, from the elementary theory of matrices, that the solution of the
system (3.7) can be written in the form

n

rt n - _ " t p-O,h + 1
j,k - L.. n,h j + 1,k

h~j+k

(n?j+k), (3.8)

where the coefficients (tn,h) are introduced in the representation (1.10).
Now, since the set {tn(z)} is monic, then from (1.11) and (3.8), we can

deduce that

n

Irt],k I~ An(r) L
h~j+k

IP
-O,h+ 11
J+ 1,k

rh (n? j + k). (3.9)
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Furthermore, appealing to the relation (3.1) and applying Cauchy's
inequality

I j+l,k I":::'M[ . ].(Jh+l-i,i
Ph+l-i,i '" Pj+l,b r h+lr

and noting that

(h + 1 - i) (J h+ 1- i,i < (h + 1)e 1/ 2,

(Jh_ i,i

we obtain

j+k h , 0
M[Uj,k;r]~ II (h+l-i)Ipj,~\'~iJl';---

h~O ,~O h-l,l
e 1/ 2 J+k h

<-r-M[PJ+l,k;r] I I (h+l)
h~O i~O

It should be observed that this inequality is true whether the given set
{Pm,n(Z; w)} is monic or not.

We now evaluate the Cannon sum Qm,n[r] of the derived set
{um,n(z; w)} by appeal to the formula (3.6). Observing that

rh+1< M[PO,h+ 1; r],

since the set {Pm,Az; w)} is monic, and that

then, in view of (1.3), (3.9), and (3.10), we can easily arrive at the
inequality

e(m + n + 1)(m + n + 2)2
Qm,n[r] < 3r(m+l) Wm+l,n[r]

X{l+ m+~-1 (k+l)m+~-l)ch(r) ~ WO,i+l[rJ} (3.11)
L, L, rh L, ri + 1 •
k~O h~k i~k

We are now in a position to establish the inequality (1.13). Irat least one of
the functions A(r) and w[r] is infinite there is nothing to prove. Supposing
therefore that both the functions A(r) and w[rJ are finite, we choose the

640/47/4-2
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finite numbers rand p to be respectively greater than A(r) and w[r]. Then
from the definition (1.6) of w[r] and (1.12) of A(r) it follows that

(m, n): 0), (3.12)

where K denotes finite positive numbers independent of m, n and do not
retain the same values at different occurrences. Introducing (3.12) in (3.11)
and noting that r > r, p > r, it easily follows that

for sufficiently large m + n. Making m +n tend to infinity, (3.13) yields, for
the Cannon function Q[r],

and the required inequality (1.13) follows at once, in view of the choice of
the numbers p and r. The first assertion of Theorem 1 is now proved.

To complete the proof of Theorem 1 we assume that the given set
{Pm,n(z;w)} is effective in the closed sphere Sr so that w[r]=r and the
inequality (1.13) reduces to the form

Q[r]";;A(r). (3.14 )

The fact that this inequality cannot be improved is illustrated by showing
that the bound A(r) is attained by the Cannon function of the derived set of
the set {Pm,n(z; w)} of the example of Section 2 above.

Actually, in the notation (1.9), we can deduce from the representation
(2.4), written for wn + 1, that

to(z)=1; tn(Z)=zn+f(n){1-f(n~1)}zn-l (n):1).

Hence, the following representation can be verified.

zn=tn(Z)+:~~ (-1t~kj~::~~L~~:2 {j(J)-1}]tk(Z)

Therefore, the Cannon sum of the set (tn(z)} will be

(n ~ 1).

(r> 0). (3.15)
n n~lf(k+1)[n+l . Jk

An(r)=r +2 k~of(n+1) j~\I+2 {j(j)-1} r

Introducing the value (2.2) of f(J) in (3.15), we obtain, on the one hand,

(3.16)
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On the other hand, since «(j+3)/U+ 1))(j+I)/2<e and monotonically
increases withj for j?;O, then (3.15) yields, for O<r<e,

n-I[ n+I U'+3)(j+I)/2]
An(r)<r

n+2 L: , Il '+1 r
k

,
k~O :J~k+2

«2n+l)en
, (3.17)

Therefore, for the Cannon function of the set {tn(z)}, (3.16) and (3.17)
imply that

A(r)=e (O<r<e), (3,18 )

In view of the fact that the set {Pm,n(z; w)} is effective in S" for r?; 1, it
follows from (2.8), (3.14), and (3.18) that

Q [r ] = e (1 :( r < e),

and the bound in (3.14) is attained. The proof of Theorem 1 is therefore
complete.

It should be finally observed that, if in the given simple (not necessarily
monic) set {Pm.,,(z; w)}, we have

(n?; 1), (3.19 )

then in the derived polynomials there are no redundant ones. Hence the
coefficients (iXZ) of (3.3.) no longer exist and from (3.6), we deduce that

(3.20)

with the reservation that p-m+ I,n -1= 0 and p-m + l,n , . = 0 for}' > n We now
. m+l,n rn+n+l~J,J .'.

introduce in (3.20) the inequality (3.10), which is true whether the given set
{Pm,n(z; w)} is monic or not, and follow a treatment similar to thatleading
to the inequality (1.13). In this way we are led to the following inequality
for the Cannon function of the derived set {um,,,(z; w)},

Q[r] :(w[r], (3.21 )

provided that the Cannon function w[r], of the given set {Pm,n(z; w)}, is
finite. The inequality (3.21), which is true whether the set {Pm,,,(z; w)} is
monic or not, will be supplemented in the following section on integrated
sets.
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4. INTEGRATED SETS

Proof of Theorem 2

The proof is rather straightforward; thus, when j ~ 1, we evaluate
M[Vi,k; r] from the definition (1.14) and by the use of Cauchy's inequality.
The following steps are easily arrived at:

i + k - 1 h Ipi - l,k I r h + 1
M[vj,k; r] ~ I I _c.::....:.:.k_--"",'~__

h=O i=O (h -I + 1) (Jh-i+ l,i

i+k-l h (J ..
,;:: M[ .] ~ ~ h - 1,1

",r Pi-l,b
r

h::O i:-o(h-i+l)(Jh-i+l,i

Further, the representation of the monomials (zmwn) in terms of the
polynomials {vm,n(z; w)} can be derived from (1.2) in the form

m+nk-l
_mwn - m ~ ~ p-m-l,n V (z· w)

J:, - L., L.. k - 1 - j,j k - i,i' ,
k~1 i~O

(4.2)

when m > 0, and when m = °then wn= VO,n(z; w) as in (1.15).
The Cannon sum Am,n[r] of the integrated set {vm,n(z; w)} can be

deduced from (4.1) and (4.2). Thus, when m > 0, the following inequality
can be easily obtained.

Am,n[r] < !er(m + n)2(m + n + 1) wm-l,n[r], (4.3)

and when m = 0, (1.15) gives

(4.4)

Now, if the Cannon function w[r] of the set {Pm,n(z; w)} is finite, then
given a finite number p greater than w [r], we can deduce from (4.3) and
(4.4) that

A[r]~p,

where A[r] is the Cannon function of the set {vm,n(z; w)}. Hence by the
choice of the number p we may infer that

A[r]~w[r]. (4.5)

Finally, we observe that the given simple set {Pm,n(z; w)} is the derived set
of the set {vm,n(z; w)} in which we have

(n ~O),
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so that Eq. (3.19) is satisfied. Therefore, if A[r] is finite the inequality
(3.21) is valid, and in the foregoing notation, it can be written in the form

w[r] ~ A[rl (4.6)

The inequalities (4.5) and (4.6) imply the equality of the Cannon
functions A [r] and OJ [r] and Theorem 2 is the therefore established.

In conclusion, we append with the following result.

THEOREM 3. Let {Pm,n(z; w)} be a given simple set of polynomials which
satisfy (3.19). Suppose further that

Pm.n(O; w) = 0 (m~1;n~O), (4.7)

and that {um,n(z; w) is the derived set of the given set {Pm.n(z; w)}. Then the
Cannon functions of the sets {Pm.n(z; w)} and {um,n(z; w)} are equal for any
positive value of r for which these functions are finite.

In fact, according to (1.8) and (4.7), we observe that

(m ~ 1; n ~ 0).

(m~1;n~0),

Hence, the required result of the theorem follows from Theorem2, in view
of the Eq. (3.19).

Consideration of the set {Pm,n(z; w)}, given by

(m +n)!
Pm,n(z;w)= +zmwn

(Jm,n

(n ~O),

illustrates the essentiality of the condition (4.7).
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